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Rheology of non-Newtonian glass-forming melts 
Part I Flow-stress relations 
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The stress-induced f low of non-Newtonian glass-forming systems is analysed in order to obtain 
a general algorithm for describing the kinetics of relaxation and retardation in glass-forming melts. 
It is shown that the existing empirical relations for plastic, pseudoplastic and dilatant f low can be 
derived in the framework of the PrandtI-Eyring potential barrier model, which is extended in order 
to includedilatant effects. The advantages and shortcomings of this molecular model are 
considered using experimental evidence on the f low of organic polymers, inorganic glasses and 
metal alloy glass-formers. It is shown that the mathematical formalism following from the 
potential barrier model can be conveniently used in order to derive the non-linear kinetics of 
relaxation of simple and polymer glass-forming melts. 

1. Introduction 
It is well known that efforts to obtain a quantitative 
description of the kinetics of relaxation in simple or 
polymer glass-forming melts, using Maxwell's equa- 
tion in its classical linear formulation, have failed. An 
instructive example in this sense is given by the tech- 
nically important process of glass annealing, i.e. the 
process of relaxation of strain birefringence in vitrified 
melts. A comprehensive summary of these problems 
has been given by Morey [1] (see also [2]). 

In order to overcome the restrictions of Maxwell's 
linear kinetics of relaxation, two different empirical 
approaches have been employed until now. 

(i) More than one relaxation time has been intro- 
duced, using a set of linear Maxwell equations. This 
method, described in detail by Mazurin [3], has been 
widely employed by Kovacs [4] (for earlier investiga- 
tions see also [5]). 

(ii) More complicated non-linear empirical relaxa- 
tional dependences have been used and especially rela- 
tions that correspond to differential equations with 
a time-dependent time of relaxation. A classical 
example in this respect gives Kohlrausch's fractional 
exponent formula [6] which has been introduced into 
silicate melt rheology by Rekhson and Mazurin [7] 
(see also [3, 8]). Similar time dependences have been 
used earlier by Jenckel [9-11] in order to describe 
relaxation in organic glass-forming melts. A fractional 
exponent formula has been also employed by 
Williams and Watts in describing dielectric relaxation 
(see [3, 8]). 

A third possible approach for a more general, non- 
linear description of relaxation kinetics is attempted in 
the present investigation. According to this approach 
the flow-stress dependences of the system under con- 
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sideration, e.g. its non-Newtonian response to stress, is 
introduced into the equations describing its re- 
laxation. In this way the particular theological behavi- 
our of the relaxing system is directly accounted for. 
This method has been indicated for the first time by 
Eyring and co-workers [12, 13] and in fact is em- 
ployed in most of the present-day analysis of the flow 
and relaxational behaviour of polymer melts [8, 14, 
15]. In our investigation, this approach wilt be speci- 
fied and extended using existing or appropriately 
modified models for the flow-stress behaviour of 
melts. 

In Part I of the present contribution, the mechan- 
ism of flow of real liquids is considered. Particular 
attention is given to the possibility of deriving existing 
empirical flow-stress relations in the framework of the 
same molecular model, the Prandtl-Eyring potential 
barrier approach. The mathematical and physical sim- 
plicity of this model and the fact that practically all 
known empirical flow-stress relations can be obtained 
from it, determined our choice. The advantages and 
shortcomings of this classical model are discussed, 
using available experimental evidence. Moreover, an 
attempt is made to extend the potential barrier model 
in order to describe the flow behaviour of dilatant 
liquids. 

In Part II of the present contribution [t6] non- 
linear analogues of Maxwell's (or Kelvin-Voigt's) 
equation are obtained, corresponding to different 
types of non-Newtonian flow behaviour observed in 
real glass-forming melts. It is also shown that existing 
empirical approaches in the kinetics of relafation (in- 
cluding Kohlrausch's formula and similar depend- 
ences)-can be explained and obtained as limiting cases 
of a general derivation. 
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2. F l o w  stress c h a r a c t e r i z a t i o n  o f  real 
g l a s s - f o r m i n g  m e l t s  and  t h e  P r a n d t l -  
Eyr ing  m o d e l  

The basic rheological characteristics of a liquid are 
given by - the  dependence of shear rate of flow 
dT/dt = ~' on shear stress S [17-20]. For  Newtonian 
(or ideal) liquids 

S 
j~ - ( l a )  

qo 

holds, where qo = constant is the Newtonian viscosity 
of the melt. In the practice of rheological investiga- 
tions, Equation la is usually fulfilled only in the limit- 
ing case S ~ 0. Real liquids deviate from Equation la 
in the two possible ways: j, increases either faster or 
slower than the linear dependence predicted by Equa- 
tion la. 

In order to retain the classical form of Equation la 
even for non-Newtonian liquids, we introduce here as 
usual (see, for example, [19, 20]) an apparent (or 
effective) value of the viscosity q(S) = qapp SO that 

S 
? - (2) 

]]app 

When qapp is a decreasing function of S, the liquid is 
called pseudoplastic (or in polymer literature, shear 
thinning) and when qapp increases with increasing 
S the liquid is termed dilatant (or in polymer techno- 
logy, shear thickening). The pseudoplasticity and 
dilatancy of liquids are illustrated in Fig. la and b. 
The ~(S) function of Bingham's plastic body [17] is 
also given in the same figure as a limiting case of 
pseudoplasticity. Bingham's ~, function has the form 

1 
~, = - - ( S  - So) (lb) 

qo 

It is seen that according to it there is a distinct stress 
limit, So, below which no flow is possible (Fig. lc). 

A molecular model, first developed by Prandtl [21] 
(see also [22]) and then derived in terms of the Abso- 
lute Rate Theory by Eyring [19, 20, 23, 24] gives 
a simple and instructive explanation for the non- 
Newtonian behaviour of pseudoplastic materials. 
Prandtl and Eyring assumed that in a liquid subjected 
to tangential stress the activation energy barrier, 
U(T), for self-diffusion decreases in the direction of 

the applied stress by the quantity Aa proportional to 
S. In the opposite direction, U(T)  increases by the 
same quantity, Aa (Fig. 2). In this way the rate of net 
flow, ~, in the direction of the applied stress becomes 

= ~ s i n h  2 ~ S  (3) 

where 

U(T)~ 
D = d2z * exp ~ - f . ]  (4) 

is the self-diffusion coefficient of the building units of 
the liquid, k is Boltzmann's constant and U(T)  is the 
respective activation energy at temperature T for the 
melt at rest. With "c* is denoted the reciprocal of 
the frequency of eigen vibrations of the building units 
of the melt. The structural units responsible for the 
flow occupy the volume d 3 = V(the so-called "viscous 
volume"). This viscous volume should be propor- 
tional to the volume do 3 -- Vo of the building units of 
the system. Using the Stokes-Einstein equation in the 
form derived in the framework of the Absolute Rate 
Theory 

k T  
D - ( 5 )  

dqo 

Equation 3 can be written as 

A 
? = - -  sinh (aS) (6a) 

rlo 

According to the above considerations, given in 
more detail by Glasstone et al. [23], a = d3/2kT 
and A = 1/a. 

In Eyring's original derivation it was assumed that 
U(T)  = Uo = constant. However, on introducing qo 
through Equation 5, more complicated U(T)  depend- 
ences (e.g. corresponding to the Vogel Fulcher- 
Tammann formula) have to be anticipated. 

In the framework of a more general formulation of 
the Prandtl-Eyring approach [25], Equation 6a can 
be written in the form 

A 
- sinh [ f*a (S  - So)] (6b) 

qof*  

to include also systems with a plastic stress limit, So. 
The factor f *  gives the reciprocal of the fractional area 

g 
.p- 

g 
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Figure 1 Flow behaviour of liquids (shown schematically). (a) Shear rate-shear stress dependences. 1, Newtonian fluid; 2, pseudoplastic liquid; 
3, dilatant melt. (b) Dependence of the apparent viscosity on stress: 1, Newtonian; 2, pseudoplastic; 3, dilatant. (c) Shear rate-shear stress 
dependences for pseudoplastic liquids (---) and Bingham's body approximation ( ). 
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Figure 2 The Prandtl Eyring model for the change of activation 
energy profile in a pseudoplastic liquid under applied stress. Liquid 
at rest ( - - - ) ;  the two positions of the spherical structural unit are 
separated by an activ.ation barrier U(T). The activation energy 
profile is defined At =f*(d3/2kT)S ( ). 

occupied by non-Newtonian flow units to the surface 
of inert (or Newtonian) structural elements [25]. Thus, 
f *  accounts for the number of structural units which 
take part in the flow process. 

The Prandtl-Eyring potential barrier model has 
been a subject of a serious criticism [26, 27]. Most 
objections are connected with its application in the 
flow of polymer solutions and melts where the com- 
plicated hydrodynamics of movement of more or less 
entangled polymer coils, as described by Bueche's free- 
draining coil model [19, 28, 29] or by more recent 
tube-flow models [14, 15, 30] seem to dominate the 
process and even to exclude the necessity of a poten- 
tial barrier approach. 

The weakest point of the Prandtl-Eyring formalism 
is the nature of the viscous volume, V, and its connec- 
tion with the volume of real structural units, Vo, in the 
system. It appears (see Section 5 and [25]) that in 
treating flow in polymer melts, hundreds and even 
thousands of structural units are responsible for the 
flow process. 

In spite of this criticism the following arguments 
were decisive in adopting the Prandtl-Eyring poten- 
tial barrier model as a starting point in the present 
investigation: 

(i) The general applicability of the activated com- 
plex idea: it can be applied in principle to any system 
(melt, crystal, solution). This cannot be said for the 
more specific flow models mentioned above, derived 
for particular systems (e:g. tube and coil models for 
polymers). 

(ii) The relatively simple mathematical formula- 
tions describing the ?(S) dependences: it is shown in 
Part II [16] that the introduction of flow-stress rela- 
tions, derived from Equation 6, into the relaxational 
equations allows direct integration without further 
approximations. 
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(iii) The possibility to interrelate the existing 
flow-stress equations: it is easy to establish connec- 
tions between this model and the variety of existing 
flow-stress formulae (even with those predicted by the 
polymer molecular theories). 

(iv) The possibility to extend the Prandtl-Eyring 
approach in order to describe the flow of dilatant 
materials: the Prandtl-Eyring potential barrier model 
even in its most elaborate form (see Equation 6b and 
[25]) is applicable only to pseudoplastic liquids. The 
polymer models mentioned [19, 28, 30] also refer only 
to pseudoplastic flow. However, a relatively simple 
extension can be made of the Prandtl-Eyring model in 
order to include the flow of dilatant liquids. This 
extension is attempted in the next section. 

Let us consider first the connection between the 
Prandtl-Eyring model and existing empirical rela- 
tions. 

Accounting for the well-known approximations of 
the hyperbolic sine function (see, for example, [31] ) i.e. 

sinh(x) ,~ x f o r 0 < x ~ l  (7a) 

(1)  
sinh(x) ~ x 1 + ~ x  2 f o r x < l  (7b) 

1 
sinh (x) ~ ~ exp(x) for x ~> 1 (7c) 

it can be easily seen that Equation 6a leads at aS -~ 0 

to Newton's law and Equation 6b to the Equation lb 
for Bingham's plastic body. Further, Gee and Lion's 
formula (see, for example, [32]) 

S 
? = AI(1 + boSm-1)  - (8) 

q0 

can be obtained from Equations 6 and 7b with A1 = 1, 
m = 3, bo = a2/6. Another illustration is the equation 
of de Waele-Ostwald [17, 33, 34] 

t = A2(Sn-1)  S (9) 
qo 

where A2 is a constant. Usually, Equation 9 (some- 
times referred to as Reiner's formula [35]) is used to 
describe the flow of polymer melts in practical terms. 

Equation 9 follows from Equation 6a taking into 
account that for 0.5 < x < 1.5 the optimal approxima- 
tion to the sinh (x) function is the semi-cubic parabola 
which specifies n as n ~ 1.5 (Y = Cx 3/2 with C ~ 1.2) 
(Fig. 3). For the same interval, Equation 7b gives 
a close approximation to the sinh x function; the con- 
nection between Equations 8 and 9 is also obvious. At 
higher x values (for 1.5 < x < 3) a more appropriate 
approximation to the sinh function is a higher n- 
valued parabola (e.g. Y =  0.6x~/2). In this sense it 
appears that the value of n in Ostwald's (or Reiner's) 
formula has, in fact, no definite physical meaning and 
changes from 1 to higher n values in dependence of the 
particular interval of aS values employed. 

At very high aS values (i.e. at aS ~> 1) by_virtue of 
Equation 7c we have from Equation 6a 

A 1 
l n?  ~ i n - - +  aS (10) 

no 
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Figure 3 The sinh function and its approximations. 1, sinh function; 
2, Taylor's second term expansion of sinh x (Equation 7b). 
3, Semi-cubic parabola Y = 1.2x3/2; 4, 5/2 parabola Y = 0.6x 5/2. 

as is frequently observed in the flow of polymer melts. 
This formula gives a ~/(S) dependence proposed by 
Bartenev [36] (see also [20]) who used the concept 
that non-Newtonian flow behaviour results from 
a process of structural change under stress. 

The Prandtl Eyring molecular model and Equations 
6a and b cannot give an explanation for the dilatant 
behaviour of liquids. In terms of the de Waele- 
Ostwald empirical equation (Equation 9, which in this 
sense is, in fact, more general than Equations 6a and b) 
dilatant behaviour of liquids follows at n < 1. Thus for 
n = 1/2 another empirical relation 

= __A2s1/2 

110 

rlo 

known as Darcy's formula is obtained (see [33]). 
Moreover by using Equations 6a and b or the 

dependences derived from them, the possibility of 
transitions from pseudoplastic to dilatant behaviour 
(or the reverse transition) is excluded. Such trans- 
itions, however, are observed in the flow behaviour of 
real liquids when greater S intervals are investigated. 
Examples in this respect can be found in the literature 
[33, 34] (see also [25]) the most striking of them being 
water and aqueous colloid solutions. 

3. Generalized molecular model: 
combined di latant and 
pseudoplastic behaviour 

Molecular dynamic simulation indicates that by ap- 
plying shear stress to a simple liquid constituted of 

( ( ] )  Sheoring force 

/ Slip links 

tube / ~ / "  " / ~ ~ " ~  

Polymer molecule 
(b) contour 

Figure 4 Dilatant behaviour and tube models of flow of simple and 
polymer melts. (a) Jump of a molecule flowing in an entanglement- 
saturated tube over a potential barrier at applied shearing force. 
Two molecular entanglements have been activated and they hamper 
the jump of the molecule under consideration. (b) Polymer molecule 
contour flowing in a hypothetical tube with slip links. 

billiard-like spherical molecules, an ordering and 
layering process takes place which enhances flow [37]. 
Similar effects follow in the framework of the coil and 
tube models ofpolymer  solutions [14, 15, 28, 29]. In 
terms of the Prandtl-Eyring model this enhancement 
is described by a decrease of the potential barrier in 
the direction of stress (Equations 6a and b) and thus 
the flow is facilitated. Consequently, pseudoplastic 
behaviour results and known ~(S) functions given with 
Equations 6, 8, 9, 10 are obtained. 

In order to account for the dilatancy in the flow of 
real liquids we have to consider additional molecular 
effects which introduced into the Prandtl Eyring 
model could lead to a decrease of the flow rate, e.g. by 
an increase of the overall activation energy with in- 
creasing flow rate ~. 

Such effects may be described generally as the cre- 
ation of additional molecular disorder and increased 
intermolecular interaction (or friction) when a com- 
plicated flow unit of the liquid "jumps" over Eyring's 
potential barrier under stress. 

Let us consider a model according to which every 
molecule of the system flows through an imaginary 
tube representing the collective effect of all surround- 
ing molecules and that some sort of entanglements 
strayed in the tube are activated upon flow and that 
for a given molecular structure the number of molecu- 
lar bonds (or entanglements) increases with increasing 
flow rate ~,. 

Thus the applied shearing force, S, in general lowers 
the potential barrier but disorder and additional mo- 
lecular friction can be also caused by the increased 
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flow velocity and may thus hamper the jump over the 
potential barrier, especially for asymmetric complex 
molecules, which may be "hooked" by the tube en- 
tanglements as illustrated in a simplified scheme in 
Fig. 4. - 

More generally, asymmetric molecules may be 
oriented by increasing flow velocity, thus diminishing 
viscosity (pseudoplastic effect); however, entanglement 
formation may be facilitated between oriented mo- 
lecules and viscosity may increase (dilatant effect). 
A possible mechanical model schematically illu- 
strating such a situation in a liquid composed of 
asymmetric molecules is given in Fig. 5. 

In the case of complicated polymer structures it can 
be also assumed that chains wriggling in the hypo, 
thetical tube may be trapped by an increasing number 
of imaginary slip links through which the contour of 
the chain passes with increased difficulty at increasing 
flow rate (Fig. 4b). 

To this and similar models the same scheme of 
considerations can be applied. Let us assume, for 
example, that the initial concentration of active en- 
tanglements (or slip links) per unit length in the liquid 
tube surrounding the contour of simple or chain-like 
molecules is ~ No at ? = 0. The steric factor 0 < ~ < 1 
reflects the flexibility and the complexity of the struc- 
tural units (or polymer segments) of the melt and No is 
the concentration of these units at rest. Thus for the 
structural unit with a contact surface area rcdo a, occu- 
pying the cylindrical volume ~d3/4, the number of 
expected entanglement contacts (or slip links) at rest 
is approximately equal to {No~d~. 

Suppose that for the considered structures the num- 
ber of entanglements increases proportionally to the 
volume rcdg to do ?/4 swept out by the jumping molecu- 
le during the time, to, necessary for the jump itself. 

Let Eo be the increased energy with which the 
entanglement (or slip link) binds the jumping molecule 
(or polymer segment) and thus inhibits the molecular 
movement. The jump of every structural unit through 
the potential barrier takes on average the time of eigen 
vibrations, ~*, of the molecules [23] (i.e. to = ~*). Thus 
the number of flow-created entanglements per unit 
volume of the melt is 

N = ~rcdo3Uo~z*? (12) 

and thus the activation energy fol: the discussed en- 
tanglement limited viscous flow becomes 

Q(T) = EoNo~d~( l  + ~ * ? )  (13) 

Introducing Qo(T) = EoNo~Trd g into U(T) in Equa- 
tion 4 and denoting Fo = EoNo~rcd~.*/4kT, we must 
write, instead of Equations 3 and 6, a new extended 
?(S) dependence. Accounting for Equation 5, it can be 
represented in the form 

A 
? = - -  sinh (aS) exp( - Foj') (14) 

11o 

In this equation the sinh function accounts for 
pseudoplasticity and the exponent for dilatant effects. 
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(a) 

(b) 

{c) 

Direction of flow 

Figure 5 Molecular model illustrating steric entanglement effects in 
dilatant flow behaviour. (a) Liquid at rest: no orientation of the 
asymmetric molecules, only one chance entanglement is seen. 
(b) Liquid at moderate flow velocity: beginning of orientation, 
moderate activation of entanglements. (c) Fast flow: pronounced 
orientational effects, full activation of entanglements. 

The ?(S) dependence resulting from Equation 14 is 
illustrated in Fig. 6a for different Fo values. It is seen 
that the higher the value of Fo (Bo in Fig. 6a is 
proportional to Fo), the more pronounced is the 
dilatant behaviour expected. At higher aS values, 
pseudoplastic flow again follows, depending on the 
value of Fo. 

In considering Equation 14, two limiting cases can 
be distinguished. 

(i) For small Fo? values (i.e. for Foe/~ 1), the expo- 
nent in Equation 14 can be approximated by 



4 

3 

.;02 m-- 

1 

0 
(a) 

4 5 

. - - - 

5 10 15 20 
x =crS 

2 

S 

j ,  

S 

]•/ / / "  

3 1 / /  
I 

I 
/ /  

/ 
/ 

/ 

/ / "  4 

I I I I I I 
o 2 4 

(b) x=aS 

Figure 6 Different types of flow behaviour according to the general- 
ized molecular model (Equation 14) in coordinates Y = "~qo/A 
versus x = aS. (a) ~(S) dependences following from Equation 14 for 
different values of the parameter Bo = A/qoFo: 1, Bo = 0; 2, 
B o = 0.1; 3, Bo = 0.5; 4, Bo = 1; 5, B o = 3; 6, Bo = 10. (b) 1, Newto- 
nian behaviour (---); 2, sinh function according to Equation 6a; 3, 
the approximation given with Equation 15 at (qoF*/A) 1/2 = 1; 4, 
)(S) dependence according to Equation 17c for large aS values at 
(1/Fo = 1). 

exp(  - F05') ~ (1 - F0~) ~ (1 + Foj,) -1 ~ 1 / s  
where F*  is an appropriately chosen constant. In this 
way Equation 14 can be written as 

~ ~ sinh (aS) (15) 

This approximation is illustrated in Fig. 6b. 
It is evident (see Fig. 6) that Equation 15 provides 

through a combination of a sinh function and a square 
root, a simple description of a possible transition from 
dilatant to pseudoplastic behaviour. At aS ~ 1, Equa- 
tion 15 gives directly Darcy's equation, Equation 11. 

When Fo ~ 0 (i.e. when entanglement effects can be 
neglected either because of No ~ 0 or of ~ ~ 0) the 

general dependence (Equation 14) gives as a particular 
case the Prandtl-Eyring equation (Equation 6a) and 
the already discussed ~(S) relations describing 
pseudoplastic behaviour (i.e. the de Waele-Ostwald 
formula with n > 1, the relation of Gee and Lion and 
Bartenev's equation). 

When a S ~  1 with e x p ( - F o ~ ) ~ ( 1  +F0~')  -1, 
Equation 14 leads to a ~(S) dependence proposed 
many years ago by Reynolds for describing the 
dilatant behaviour of suspensions [32]. According to 
Reynotd's "wet sand model", the apparent viscosity, 
] ' l app  , increases at increasing flow rate as 

r l app  = qo(1 + qb) (16) 

i.e. as in an Einstein suspension with diminishing free 
volume. Here qb is. given by the product d0 = Fo~'. 

(ii) For  high Fo~? values (i.e. at Fo~' > 1, when j, can 
be neglected as compared with exp(Fo ~/), Equation 14 
leads to another possible approximation 

~( ~ ~oo l n - -  + ln(s inhaS) (17a) 
q0 

Accounting for Equation 7a, the above relation gives 
for small aS values 

I ( ~oo ) J' ~ ~oo In + ln aS (17b) 

and with Equation 7c, for high aS values 

~ In + ~aS  (17c) 

This approximation is also illustrated in Fig. 6b. It is 
seen that at Fo~' > 1, Equation 14 (or Equations 
17a-c) determines a pseudoplastic behaviour (Equa- 
tion 17a) followed by a quasi-Newtonian dependence 
at high aS values. One of the modifications of Eyring's 
theory, the Powell-Eyring equation [20], also de- 
scribes a similar quasi-Newtonian j~(S) dependence. 

The present analysis shows that our generalized 
formula, Equation 14, describes pseudoplasticity (or 
pseudoplasticity with an initial plastic limit if Equa- 
tion 6b is used), dilatancy as well as the possible 
transformations between these two modes of flow. 

4. Temperature dependence of the 
parameter  a 

The analysis of the temperature dependence of the 
parameter a appearing in Equations 6 and 14 could 
give additional insight into the physical basis of the 
Prandtl-Eyring model. 

In this original derivation Eyring has assumed that 
the viscous volume is a constant [23], i.e. d 3 =  d 3 
where d g is determined by the molar volume of 
the structural unit Vm as d 3 = Vm/Na, Na being 
Avogadro's number. In a further approximation it was 
assumed (as for gases) that Vm(T) ~ R T  [25] and thus 
the parameter a becomes a constant. From a general 
point of view it should be expected, however, that the 
viscous volume d a should be determined by a more 
realistic temperature dependence of the molar volume 
Vm(T) of the liquid. Using the well-known Mendeleeff 
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formula (in the form given by Oswald and Davies, 
cf. [38]) 

Vm o 
Vm(T ) -- (18) 

T* - T 

we should expect that, in fact, the following equation 
should hold 

a(T)  ~ 2RT  T T* - (19) 

where V ~ is the molar volume of the flow unit at 
T = 0 K .  

According to Partington [38], T* in Equation 19 
can be evaluated from the critical temperature, To, of 
the liquid under consideration as 

T* ~ 2To (20) 

In this way with T c ~ ( ~ - ~ ) T m  (as T~ is usually 
estimated) and the Beaman-Kauzmann rule connect- 
ing melting temperature, Tin, with the vitrification 
temperature of the melt, Tg, as Tg ~ 2 Tin, it follows 
that T* ~ (5 - 4) Tg. In this way T* can be connected 
with molecular constants known for every glass- 
forming melt. 

5. Experimental evidence of the 
mechanism of viscous f low in 
simple and polymer 
glass-forming melts 

The general method for examining the flow behaviour 
of a viscous system is the analysis of ~(S) curves. The 
first systematic investigations in this respect were done 
by Ostwald with colloid solutions [17, 33, 34]. In most 
cases, typical pseudoplastic behaviour was observed 
and described in terms of the de Waele-Ostwald 
equation (Equation 9). It was found that for aqueous 
colloid solutions the exponent n ranges from 1.3-1.8. 
(cf. the experimental evidence collected by Ostwald 
[33, 341 for 25 different sols). For aS < 1, the mean 
value of n is centred according to our prediction 
around the semi-cubic parabola n value (n = 1.5). 
With increasing sol concentration, the value of the 
Newtonian viscosity, qo, increases according to the 
already discussed Einstein formula [33] but the value 
of n remains unchanged. Ostwald also reports several 
examples for transition from dilatant to pseudoplastic 
behaviour with )(S) dependences" having a similar 
course as that predicted by Equations 15 and 17. 

The first attempt to correlate the experiment with 
the derivations of the potential barrier theory was 
done by Eyring and his co-workers [23, 25]. They 
found that a number of pseudoplastic materials (rub- 
ber, several organic polymer melts and solutions, 
metal alloys, etc.) obey Equations 6a and b. A further 
step in this respect was undertaken by Li and Uh- 
lmann [26] who investigated the stress-induced 
pseudoplastic flow of a RbzO/SiO2 melt and critically 
analysed the results in terms of the Prandtl-Eyring 
model. Again qualitative agreement with Equation 6a 
was found. 

Most of the experimental evidence on the flow of 
organic polymer solutions collected in recent years 
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has been examined only in the framework of the men- 
tioned specific polymer molecular theories. Accounts 
in this respect may be found in the literature [19, 20, 
29]. A qualitative (or even semi-quantitative) coincid- 
ence with the predictions of the free-draining coil 
or tube model theories [14, 15, 28, 30] was estab- 
lished. 

Fig. 7 illustrates the flow behaviour of a typical 
organic polymer poly(decamethylene terephthalate) 
(PDMT). The ~,(S) curves for this polymer were ob- 
tained in our laboratory by using a Searle-type rota- 
tional viscometer [39]. It is seen from the figure that at 
small shear stresses, true Newtonian flow is observed, 
while at S ~ 12000Pa a deviation from the linear 
proportionality begins. This prolonged linear ~(S) de- 
pendence may be regarded as an indication for the 
validity of Equation 6a (cf., and the course of the sinh 
function in Fig. 3). 

Figs 8 and 9 show flow-stress curves of a typical inor- 
ganic glass-forming melt, 0.3Li20'0.2NazO'0.5Pb205 
as reported by Wfische and Brfickner [40J and for 
a metallic glass-forming melt with the composition 
0.82Fe 0.18B [41], respectively. The analysis in terms 
of the de Waele-Ostwald equation (Equation 9) gives 
again n = 1.5 for the two systems and the 
Prandtl-Eyring formula (Equations 6a and b) can be 
conveniently used to describe the flow. 

The flow stress curves for another typical organic 
polymer glass-forming melt, poly(methyl metacrylate), 
are presented in Fig. 10 according to the experimental 
evidence given by Gul and Kuleznev [42]. It is seen 
that when S changes over several decades, the de 
Waele Ostwald formula becomes a poor approxima- 
tion. However, as expected, the Prandtl-Eyring equa- 
tion describes with sufficient accuracy the ~(S) behavi- 
our of this polymer melt in the investigated wide range 
of stress deformations. 

The values of the parameter a in Eyring's Equations 
6a and b can be estimated from the point of departure 
of the ~(S) curves from linearity, where according to 
Equation 7, aS ~ 1 0.75 (see also [20, 26]). In order to 
determine more exactly the values of a and qo in terms 
of Equation 6a, we employed a conventional com- 
puter program for non-linear regression analysis. It 
was found that the qo values calculated in this way 
correspond to the Newtonian viscosity determined by 
the standard graphical extrapolation in coordinates 
log rlavv versus log S (see Fig. 10b). 

The ~(S) dependences for another organic polymer 
system, the alternating tetrafluoroethylene ethylene 
copolymer (trade name Tefzel), filled with 0.3% TiO2 
are given in Fig. 11 for a broader temperature inter- 
val also according to our measurements [39]. In co- 
ordinates log j, versus logS by virtue of the de 
Waele-Ostwald formula for the Tefzel melts, parallel 
straight lines are obtained with a slope again equal to 
1.5. However, a more adequate description of the same 
experimental results is obtained with the Prandt~  
Eyring equation (Fig. l lb). Moreover, the computer 
analysis in terms of Equation 6a gives a temperature 
dependence for the parameter a in accordance with 
Equation 19 and Mendeleeff's formula for Vm(T) 
(Fig. 1 lc). 
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Figure 7 Flow stress behaviour of polydecamethylene terephthalate according to Dobreva et al. 1-39]: 1,449 K; 2, 439 K; 3, 433 K; 4, 425 K; 5, 
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We have also obtained analogous a(T) depend- 
ences with plain Tefzel melts, as well as with a number 
of oxide and organic polymer glass-forming melts 

6.9 7.5 7.7 
(b) Log S 

Figure 8 Viscous flow of0.3Li20 -0.2Na20.0.5P20 5 melts. (a) ~(S) 
curves after W/ische and Brfckner [40] at three different temper- 
atures indicated on each curve. (b) The same data in log 9 versus 
log S according to the de Waele-Ostwald Equation with n = 1.5. 

[39]. The values of Vm(T) (or a) estimated from this 
analysis are always larger than the volume of the 
expected repeatable structural units. Thus, Vm(T) is 
five to ten times larger than V0 for Rb20/S iO2 (as 
reported by Li and Uhlmann [26]) and for the N a 2 0 /  
PbO/Bi203/S iO2 inorganic glasses analysed by us 
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[39]. This discrepancy can be explained by introduc- 
ing flow units consisting of several structural units. 
However, for the organic polymers mentioned, the 
respective a values give f *  = 102-10 '*, and it cannot be 
considered that this is consistent with the idea of 
a flow unit jumping over a potential barrier in the 
sense of the Prandtl-Eyring model. 

Finally, the flow of water, depicted in Fig. 12, gives 
a classical example [33, 34] for a dilatant non-Newton- 
ian liquid with n = 0.75. The observed ,)(S) depend- 
ence is in a qualitative agreement with both Darcy's 
empirical formula and Equation 15 (at aS < 1). 

6. D i s c u s s i o n  
It appears that the mathematical formalism following 
from the Prandtl-Eyring model (Equations 6a and b) 
can be used for a quantitative description of the flow 
curves for any pseudoplastic liquid. Its use provides 
a safe determination of rio even in sufficiently narrow 
S intervals where the graphical extrapolation in co- 
ordinates log qapp versus log S (see Fig. 10b) cannot be 
accomplished. Existing empirical formulae for 
pseudoplastic flow follow from Equations 6a and 
b and it transpires that this equation describes in 
a more appropriate way the experimental data than 
the empirical dependences of the de Waele-Ostwald 
type, which can be used only in relatively small S inter- 
vals. Practically, all analysed glass-forming melts (with 
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Figure 11 Pseudoplastic non-Newtonian flow of Tefzel melts with 
0.3% TiO2. (a) ~(S) dependences at five different temperatures 
according to measurements of Dobreva et aL [39]. (b) The same 
data in terms of the Prandtl  Eyring formula (Equation 6). (c) Tem- 
perature dependence of the parameter a in coordinates a(T)T  
versus 1/(T* - T) in accordance with Equation 19 
T* ~ 5Tg = 865 K. 1,583 K; 2, 573 K; 3, 563 K; 4, 553 K; 5, 543 K. 

the exception of water) can be described as pseudo- 
plastic liquids; in terms of the de Waele-Ostwald 
equation, the obtained n values are about 1.5 at 
medium shear stresses. 

The classical Prandtl Eyring model applicable to 
pseudoplastic flow, accounts only for the enthalpy 
component of the activated state complex. The exten- 
sion of this theory to dilatant behaviour, attempted in 
Section 3, corresponds to the introduction of addi- 
tional entropy effects (cf. Equation 14). In this sense, 
the generalization made with Equation 14 and the 
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Figure 12 Viscous stress-induced flow of water as an example of 
a dilatant liquid. (a) "~(S) data, after Ostwald [33, 34]. (b) The same 
experimental evidence in coordinates log ? versus log S gives 
n = 0.75. 

formulae following from it, seems to be a natural and 
even necessary further development of this classical 
model. 

Dilatant effects are structure dependent. They are of 
little significance in most polymer melts where the 
flow of the flexible polymer chains is relatively little 
inhibited by shear rate. In seemingly simple liquids 
with asymmetric molecules (cf. the asymmetric ag- 
gregative structure of water) dilatant effects may be 
quite significant. 

The superimposition of pseudoplastic and dilatant 
effects may result in pseudo-Nev~tonian flow. This 
pseudolinear dependence can be easily distinguished 
from the classical Newtonian behaviour: at S ~ 0, the 
pseudo-Newtonian dependence does not give ~ = 0 
(see Fig. 6). 

However, our analysis of the flow curves in terms of 
the potential barrier model revealed some problems, 
already indicated by previous investigators [25-27]. 
Thus the values of the parameter a are greater than the 
expected volume of the repeatable structural units, 
Vo. In polymer melts, the parameter a (and thus 
V(T)) reaches such high values (corresponding to 

f *  = 102-104) that they contradict the very assum- 
ptions of the molecular model anticipated with Fig. 2. 

However, it can be argued that this result seems to 
indicate that in polymer melt rheology, the flow of 

a whole polymer molecule consisting of thousands of 
monomeric units, has to be considered. In this connec- 
tion hydrodynamic coil models have to be recalled, in 
which the flow kinetics is, in fact, determined by the 
polymer molecule as a whole [28, 291. 

After a simple mathematical rearrangement, Equa- 
tion 6a can be written in the form (see [19, 20, 25]) 

qapp = arcsinh(qoj~/2Ao) (21) 
qo rlo? 

Expanding the arcsinh function in Equation 21 as 

1 
arcsinh(x) ~ x ( 1 - ~ x  2) (22) 

and with Equation 2, we arrive at 

• 1 rlapp ~ 1 -  ~' (23) 
qo 24[_ RT 

Equation (23) in its mathematical structure and phys- 
ical meaning is very similar to the well-known depend- 
ence given by Bueche [19, 28] according to which 
q,pp/qO has to be correlated with [Vm(T)jt/RT] 2. 

The above expansion, and similar considerations, 
give an indication that probably the Prandtl-Eyring 
parameter a has a more general meaning than anticip- 
ated by the simple derivation given in the literature 
[23, 25]. It can be expected that in such terms the 
enormous Vm(T) values (or f *  values) obtained here 
and by other authors [23, 26, 27] could be explained 
in a more general formulation of the physical nature of 
the process of flow in terms of the activated complex 
theory: as the volume of activated polymer coils, as the 
volume of dislocations (in the plastic flow of crystals, 
see [25]) etc. 

However, here and in Part II, it is sufficient to state 
that Equations 6 and 14 give, in fact, the desired 
formulae applicable to any type of ,~(S) dependences 
which will be used further in the analysis of the 
kinetics of relaxation and retardation. 
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